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Abstract: Stereochemical outcome observed in addstion [6 + 7], [ent-6 + 15] and [18 + methyl scrylate] have
been rationalized by evoking the participation of the corresponding compact approaches 14, 21 and 22,

We have disclosed that chiral imines 3, prepared from racemic o-substituted cyclanones 1 and optically
active l-phenylethylamine 2, add to electron-deficient olefins 4 leading, after hydrolytic work-up, to a-
disubstituted adducts 5 in high yield and with excellent regio- and stereoselectivity.!

Ph, Me
2 XX HT N 2
H NH i /\EWG i
R 5 2 l R L 4 LSS EWG
—_—-—> ’

iz H,0*
1 3 5
ee: 90-95 %

This asymmetric reaction, which is one of the most ¢fficient methodologies for the enantioselective
elaboration of quaternary carbon centers, has been widely applied to the synthesis of various compounds of
natural origin, including terpenes, steroids, and alkaloids.1® The mechanistic aspects of this addition, and in
particular, the factors that lead to the unusvally high degree of regio- and stereoselectivity observed, have been
tentatively explained through both chemical experiments and theoretical calculations. 10 It has thus been proposed
that this reaction involves a secondary enamine in tautomeric equilibrium with imine 3 and is concerted,
proceeding through a cyclic transition state.

In the present paper we report three novel experiments [6 + 7 — 8, ent-6 + 15 — 16 and 18 + methyl
acrylate — 19] in which the stereochemical course strongly supports this mechanism. To probe the mechanism
of this addition, we first chose to use as the electrophile a gem-disubstituted eleciron-deficient alkene, namely

methyl 2-acetoxy-acrylate 72, considering that the potential simultancous control of a second, tertiary
stereogenic center in the B to the quaternary one would be of particular value. Thus, addition of imine 6,12
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obtained by condensation of 2-methylcyclohexanone and optically pure (S)-1-phenylethylamine, to 72
proceeded smoothly (neat, 1.5 b, 20 °C, then 20 % aqueous AcOH, 1 h, 20 °C), leading to adduct (25, 1'R)-
8,3 (60 % yield), accompariied by ca. 10 % of regioisomer 9 (isolated as a mixture of stereomers).
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Analysis of adduct 8 by GC, IH and 13C NMR spectroscopy revealed the presence of a single
diastereomer. The R configuration at the quaternary carbon center was determined as follows. Ketoester 8 was
first protected as ketal 10.% The acetoxy group of this ketal was then cleaved by reduction (Sml; in HMPA /
THF/ MeOH)3 leading, acidic hydrolysis, to the known, enantiopure ketoester (R)-1112 (88 % overall
vield)
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The 28 configuratiod in adduct 8 was established by converting this compound by addition of ammonia
(NH3 in MeOH, 4 days at|20 °C, 72 % yield) into bicyclic lactam 12 (concomitant cleavage of the acctoxy
group by ammonia took place during this reaction). Subsequent dehydration of 12 afforded 136 (p-TsOH, 2 h
in refluxing benzene, 90 % yield). Careful analysis of the TH NMR spectrum of 13, including 1-D NOE
difference experiments, r{:vealed that the angular methyl group and the OH substituent are anti, thereby
establishing the stereochcnﬁstry at C-2 in the parent adduct 8.

The remarkable complete stereocontrol of the two stereogenic centers in adduct 8 is best interpreted by
evoking (as proposed earlier!?) for the addition the compact approach 14 that involves a synclinai arrangement
of the two partners: electraphile 7 and as nucleophilic species, the more substituted secondary enamine, which
is in tautomeric equilibrium with imine 6. According to such a model, the alkylation takes place anti o the
phenyl ring of the chiral antine moiety in its energetically preferred conformation (C-H eclipsing the cyclohexane
ring), thereby generating the R configuration at the quaternary carbon center. The total stereocontrol observed at
the tertiary center requires that the transfer of the N-H proton of the enamine to the C-2 carbon atom of the
electrophilic alkene 7 be concerted to the creation of the C-C bond. It is worthy of note that in order to account
for the observed 25 configuration, the electrophilic partner 7 needs to be arranged as depicted, namely with the
carbomethoxy group "endd" to the enamine part.
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The behavior of ethyl 2-deuteroacrylate 157 as the electrophile was next examined, because a deuterium
atom offers the advantage over other substituents of not introducing any significant steric and/or electronic
effects. Addition of imine ent-6 to 15 (neat, 48 h, 20 °C then 20 % aqueous AcOH, 2 h,20°C) led in 75 %
yield to ketoester (2R, 1'5)-16. The relative configuration of the two stereogenic centers in adduct 16 was
proved by TH NMR analysis of the comresponding bicyclic lactam 17,8 prepared by a procedure in all aspects
identical with the conversion [8 — 13], NOE difference experiments establishing unambiguously the anfi
relationship of the angular methyl group and the deuterium atom.
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In light of the preceding observation, it was predicted that the reaction of deuterated imine 18 with methyl
acrylate would afford the opposite stereochemistry at C-2 in the Michael adduct. This prediction proved correct:
the addition of imine 18 (prepared by stirring enf-6 overnight at 20 °C with MeOD)® to methyl acrylate led
cleanly to adduct (25, 1'S)-19 (partial, but irrelevant D/H exchange took place in the position o to the keto

group during the aqueous work-up of this reaction). This stereochemistry was again assigned by 1H NMR
analysis of the comesponding bicyclic lactam 20,10
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The stereochemical outcome observed in the two previous experiments may be rationalized by evoking the
compact approaches 21 and 22, respectively, for these reactions. As for addition [6 + 7], the high stereocontrol
exhibited at C-2 in adducis 16 and 19 clearly shows that the hydrogen (or deuterium) bome by the nitrogen
atom of the secondary enamines, in tantomeric equilibrium!! with imines ent-6 and 18, is transferred to the
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C-2 center of the acrylate partner in 2 manner concerted (but not necessarily synchronous) with the creation of
the C-C bond. Futhermore, in order to account for the configuration at C-2, the ester group of the acrylates is
orientated in both cases endo relative to the enamine part, as proposed for the addition [6 + 7].
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The endn spatial arrangement of the electrophilic partner in approaches 14, 21 and 22 does not appears to

be general. Indeed additior}s of methyl 2-phenylthioacrylate to imine 612 and methyl methacrylate to a related

chiral enaminoester 13

take place through an exg-arrangement. Factors responsible for the endolexo

crientation of the electrophile are currently under investigation.
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